void quick_sort(int q[], int l, int r) { if (l >= r) return; int i = l - 1, j = r + 1, x = q[l + r >> 1]; while (i < j) { do i ++ ; while (q[i] < x); do j -- ; while (q[j] > x); if (i < j) swap(q[i], q[j]); } quick_sort(q, l, j), quick_sort(q, j + 1, r); }
归并排序算法模板 —— 模板题 AcWing 787. 归并排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14
void merge_sort(int q[], int l, int r) { if (l >= r) return; int mid = l + r >> 1; merge_sort(q, l, mid); merge_sort(q, mid + 1, r); int k = 0, i = l, j = mid + 1; while (i <= mid && j <= r) if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ]; else tmp[k ++ ] = q[j ++ ]; while (i <= mid) tmp[k ++ ] = q[i ++ ]; while (j <= r) tmp[k ++ ] = q[j ++ ]; for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j]; }
bool check(int x) {/* ... */} // 检查x是否满足某种性质 // 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用: int bsearch_1(int l, int r) { while (l < r) { int mid = l + r >> 1; if (check(mid)) r = mid; // check()判断mid是否满足性质 else l = mid + 1; } return l; } // 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用: int bsearch_2(int l, int r) { while (l < r) { int mid = l + r + 1 >> 1; if (check(mid)) l = mid; else r = mid - 1; } return l; }
浮点数二分算法模板 —— 模板题 AcWing 790. 数的三次方根
1 2 3 4 5 6 7 8 9 10 11 12 13
bool check(double x) {/* ... */} // 检查x是否满足某种性质
double bsearch_3(double l, double r) { const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求 while (r - l > eps) { double mid = (l + r) / 2; if (check(mid)) r = mid; else l = mid; } return l; }
高精度加法 —— 模板题 AcWing 791. 高精度加法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// C = A + B, A >= 0, B >= 0 vector<int> add(vector<int> &A, vector<int> &B) { if (A.size() < B.size()) return add(B, A); vector<int> C; int t = 0; for (int i = 0; i < A.size(); i ++ ) { t += A[i]; if (i < B.size()) t += B[i]; C.push_back(t % 10); t /= 10; } if (t) C.push_back(t); return C; }
高精度减法 —— 模板题 AcWing 792. 高精度减法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// C = A - B, 满足A >= B, A >= 0, B >= 0 vector<int> sub(vector<int> &A, vector<int> &B) { vector<int> C; for (int i = 0, t = 0; i < A.size(); i ++ ) { t = A[i] - t; if (i < B.size()) t -= B[i]; C.push_back((t + 10) % 10); if (t < 0) t = 1; else t = 0; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
高精度乘低精度 —— 模板题 AcWing 793. 高精度乘法
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// C = A * b, A >= 0, b >= 0 vector<int> mul(vector<int> &A, int b) { vector<int> C; int t = 0; for (int i = 0; i < A.size() || t; i ++ ) { if (i < A.size()) t += A[i] * b; C.push_back(t % 10); t /= 10; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
高精度除以低精度 —— 模板题 AcWing 794. 高精度除法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// A / b = C ... r, A >= 0, b > 0 vector<int> div(vector<int> &A, int b, int &r) { vector<int> C; r = 0; for (int i = A.size() - 1; i >= 0; i -- ) { r = r * 10 + A[i]; C.push_back(r / b); r %= b; } reverse(C.begin(), C.end()); while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
// 二分求出x对应的离散化的值 int find(int x) // 找到第一个大于等于x的位置 { int l = 0, r = alls.size() - 1; while (l < r) { int mid = l + r >> 1; if (alls[mid] >= x) r = mid; else l = mid + 1; } return r + 1; // 映射到1, 2, ...n }
区间合并 —— 模板题 AcWing 803. 区间合并
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// 将所有存在交集的区间合并 void merge(vector<PII> &segs) { vector<PII> res; sort(segs.begin(), segs.end()); int st = -2e9, ed = -2e9; for (auto seg : segs) if (ed < seg.first) { if (st != -2e9) res.push_back({st, ed}); st = seg.first, ed = seg.second; } else ed = max(ed, seg.second); if (st != -2e9) res.push_back({st, ed}); segs = res; }
int son[N][26], cnt[N], idx; // 0号点既是根节点,又是空节点 // son[][]存储树中每个节点的子节点 // cnt[]存储以每个节点结尾的单词数量
// 插入一个字符串 void insert(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) son[p][u] = ++ idx; p = son[p][u]; } cnt[p] ++ ; }
// 查询字符串出现的次数 int query(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) return 0; p = son[p][u]; } return cnt[p]; }
并查集 —— 模板题 AcWing 836. 合并集合,AcWing 837. 连通块中点的数量
(1)朴素并查集:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
int p[N]; //存储每个点的祖宗节点
// 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; }
// 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) p[i] = i;
// 交换两个点,及其映射关系 void heap_swap(int a, int b) { swap(ph[hp[a]],ph[hp[b]]); swap(hp[a], hp[b]); swap(h[a], h[b]); }
void down(int u) { int t = u; if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2; if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1; if (u != t) { heap_swap(u, t); down(t); } }
void up(int u) { while (u / 2 && h[u] < h[u / 2]) { heap_swap(u, u / 2); u >>= 1; } }
// 向哈希表中插入一个数 void insert(int x) { int k = (x % N + N) % N; e[idx] = x; ne[idx] = h[k]; h[k] = idx ++ ; } // 在哈希表中查询某个数是否存在 bool find(int x) { int k = (x % N + N) % N; for (int i = h[k]; i != -1; i = ne[i]) if (e[i] == x) returntrue; returnfalse; }
(2) 开放寻址法
1 2 3 4 5 6 7 8 9 10 11 12 13
int h[N];
// 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置 int find(int x) { int t = (x % N + N) % N; while (h[t] != null && h[t] != x) { t ++ ; if (t == N) t = 0; } return t; }
字符串哈希 —— 模板题 AcWing 841. 字符串哈希
核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低 小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
typedef unsigned long long ULL; ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64
// 初始化 p[0] = 1; for (int i = 1; i <= n; i ++ ) { h[i] = h[i - 1] * P + str[i]; p[i] = p[i - 1] * P; }
// d[i] 存储点i的入度 for (int i = 1; i <= n; i ++ ) if (!d[i]) q[ ++ tt] = i; while (hh <= tt) { int t = q[hh ++ ]; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (-- d[j] == 0) q[ ++ tt] = j; } } // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。 return tt == n - 1;
while (heap.size()) { auto t = heap.top(); heap.pop(); int ver = t.second, distance = t.first; if (st[ver]) continue; st[ver] = true; for (int i = h[ver]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > distance + w[i]) { dist[j] = distance + w[i]; heap.push({dist[j], j}); } } } if (dist[n] == 0x3f3f3f3f) return -1; return dist[n];
}
Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路
时间复杂度 O(nm)O(nm), nn 表示点数,mm 表示边数 注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。
// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。 for (int i = 0; i < n; i ++ ) { for (int j = 0; j < m; j ++ ) { int a = edges[j].a, b = edges[j].b, w = edges[j].w; if (dist[b] > dist[a] + w) dist[b] = dist[a] + w; } } if (dist[n] > 0x3f3f3f3f / 2) return -1; return dist[n];
queue<int> q; for (int i = 1; i <= n; i ++ ) { q.push(i); st[i] = true; } while (q.size()) { auto t = q.front(); q.pop(); st[t] = false; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > dist[t] + w[i]) { dist[j] = dist[t] + w[i]; cnt[j] = cnt[t] + 1; if (cnt[j] >= n) returntrue; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环 if (!st[j]) { q.push(j); st[j] = true; } } } } returnfalse;
}
floyd算法 —— 模板题 AcWing 854. Floyd求最短路
时间复杂度是 O(n3)O(n3), nn 表示点数 初始化:
1 2 3 4 5 6 7 8 9 10 11 12 13
for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ) if (i == j) d[i][j] = 0; else d[i][j] = INF;
// 算法结束后,d[a][b]表示a到b的最短距离 void floyd() { for (int k = 1; k <= n; k ++ ) for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ) d[i][j] = min(d[i][j], d[i][k] + d[k][j]); }
int n; // n表示点数 int g[N][N]; // 邻接矩阵,存储所有边 int dist[N]; // 存储其他点到当前最小生成树的距离 bool st[N]; // 存储每个点是否已经在生成树中
// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和 int prim() { memset(dist, 0x3f, sizeof dist);
int res = 0; for (int i = 0; i < n; i ++ ) { int t = -1; for (int j = 1; j <= n; j ++ ) if (!st[j] && (t == -1 || dist[t] > dist[j])) t = j; if (i && dist[t] == INF) return INF; if (i) res += dist[t]; st[t] = true; for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]); } return res;
int find(int x) // 并查集核心操作 { if (p[x] != x) p[x] = find(p[x]); return p[x]; }
int kruskal() { sort(edges, edges + m);
for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化并查集 int res = 0, cnt = 0; for (int i = 0; i < m; i ++ ) { int a = edges[i].a, b = edges[i].b, w = edges[i].w; a = find(a), b = find(b); if (a != b) // 如果两个连通块不连通,则将这两个连通块合并 { p[a] = b; res += w; cnt ++ ; } } if (cnt < n - 1) return INF; return res;
int n; // n表示点数 int h[N], e[M], ne[M], idx; // 邻接表存储图 int color[N]; // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色
// 参数:u表示当前节点,c表示当前点的颜色 bool dfs(int u, int c) { color[u] = c; for (int i = h[u]; i != -1; i = ne[i]) { int j = e[i]; if (color[j] == -1) { if (!dfs(j, !c)) returnfalse; } elseif (color[j] == c) returnfalse; }
returntrue;
}
bool check() { memset(color, -1, sizeof color); bool flag = true; for (int i = 1; i <= n; i ++ ) if (color[i] == -1) if (!dfs(i, 0)) { flag = false; break; } return flag; }
int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数 int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边 int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个 bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过
bool find(int x) { for (int i = h[x]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) { st[j] = true; if (match[j] == 0 || find(match[j])) { match[j] = x; returntrue; } } }
returnfalse;
}
// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点 int res = 0; for (int i = 1; i <= n1; i ++ ) { memset(st, false, sizeof st); if (find(i)) res ++ ; }
常用代码模板4——数学知识
试除法判定质数 —— 模板题 AcWing 866. 试除法判定质数
1 2 3 4 5 6 7 8
bool is_prime(int x) { if (x < 2) returnfalse; for (int i = 2; i <= x / i; i ++ ) if (x % i == 0) returnfalse; returntrue; }
试除法分解质因数 —— 模板题 AcWing 867. 分解质因数
1 2 3 4 5 6 7 8 9 10 11 12
void divide(int x) { for (int i = 2; i <= x / i; i ++ ) if (x % i == 0) { int s = 0; while (x % i == 0) x /= i, s ++ ; cout << i << ' ' << s << endl; } if (x > 1) cout << x << ' ' << 1 << endl; cout << endl; }
朴素筛法求素数 —— 模板题 AcWing 868. 筛质数
1 2 3 4 5 6 7 8 9 10 11 12 13
int primes[N], cnt; // primes[]存储所有素数 bool st[N]; // st[x]存储x是否被筛掉
void get_primes(int n) { for (int i = 2; i <= n; i ++ ) { if (st[i]) continue; primes[cnt ++ ] = i; for (int j = i + i; j <= n; j += i) st[j] = true; } }
线性筛法求素数 —— 模板题 AcWing 868. 筛质数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
int primes[N], cnt; // primes[]存储所有素数 bool st[N]; // st[x]存储x是否被筛掉
void get_primes(int n) { for (int i = 2; i <= n; i ++ ) { if (!st[i]) primes[cnt ++ ] = i; for (int j = 0; primes[j] <= n / i; j ++ ) { st[primes[j] * i] = true; if (i % primes[j] == 0) break; } } }
试除法求所有约数 —— 模板题 AcWing 869. 试除法求约数
1 2 3 4 5 6 7 8 9 10 11 12
vector<int> get_divisors(int x) { vector<int> res; for (int i = 1; i <= x / i; i ++ ) if (x % i == 0) { res.push_back(i); if (i != x / i) res.push_back(x / i); } sort(res.begin(), res.end()); return res; }
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
求欧拉函数 —— 模板题 AcWing 873. 欧拉函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14
int phi(int x) { int res = x; for (int i = 2; i <= x / i; i ++ ) if (x % i == 0) { res = res / i * (i - 1); while (x % i == 0) x /= i; } if (x > 1) res = res / x * (x - 1);
int primes[N], cnt; // primes[]存储所有素数 int euler[N]; // 存储每个数的欧拉函数 bool st[N]; // st[x]存储x是否被筛掉
void get_eulers(int n) { euler[1] = 1; for (int i = 2; i <= n; i ++ ) { if (!st[i]) { primes[cnt ++ ] = i; euler[i] = i - 1; } for (int j = 0; primes[j] <= n / i; j ++ ) { int t = primes[j] * i; st[t] = true; if (i % primes[j] == 0) { euler[t] = euler[i] * primes[j]; break; } euler[t] = euler[i] * (primes[j] - 1); } } }
快速幂 —— 模板题 AcWing 875. 快速幂
求 m^k mod p,时间复杂度 O(logk)。
1 2 3 4 5 6 7 8 9 10 11
int qmi(int m, int k, int p) { int res = 1 % p, t = m; while (k) { if (k&1) res = res * t % p; t = t * t % p; k >>= 1; } return res; }
扩展欧几里得算法 —— 模板题 AcWing 877. 扩展欧几里得算法
1 2 3 4 5 6 7 8 9 10 11 12
// 求x, y,使得ax + by = gcd(a, b) int exgcd(int a, int b, int &x, int &y) { if (!b) { x = 1; y = 0; return a; } int d = exgcd(b, a % b, y, x); y -= (a/b) * x; return d; }
// a[N][N]是增广矩阵 int gauss() { int c, r; for (c = 0, r = 0; c < n; c ++ ) { int t = r; for (int i = r; i < n; i ++ ) // 找到绝对值最大的行 if (fabs(a[i][c]) > fabs(a[t][c])) t = i;
if (fabs(a[t][c]) < eps) continue; for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]); // 将绝对值最大的行换到最顶端 for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c]; // 将当前行的首位变成1 for (int i = r + 1; i < n; i ++ ) // 用当前行将下面所有的列消成0 if (fabs(a[i][c]) > eps) for (int j = n; j >= c; j -- ) a[i][j] -= a[r][j] * a[i][c]; r ++ ; } if (r < n) { for (int i = r; i < n; i ++ ) if (fabs(a[i][n]) > eps) return 2; // 无解 return 1; // 有无穷多组解 } for (int i = n - 1; i >= 0; i -- ) for (int j = i + 1; j < n; j ++ ) a[i][n] -= a[i][j] * a[j][n]; return 0; // 有唯一解
}
递归法求组合数 —— 模板题 AcWing 885. 求组合数 I
1 2 3 4 5
// c[a][b] 表示从a个苹果中选b个的方案数 for (int i = 0; i < N; i ++ ) for (int j = 0; j <= i; j ++ ) if (!j) c[i][j] = 1; else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
int qmi(int a, int k, int p) // 快速幂模板 { int res = 1 % p; while (k) { if (k & 1) res = (LL)res * a % p; a = (LL)a * a % p; k >>= 1; } return res; }
int C(int a, int b, int p) // 通过定理求组合数C(a, b) { if (a < b) return 0;
LL x = 1, y = 1; // x是分子,y是分母 for (int i = a, j = 1; j <= b; i --, j ++ ) { x = (LL)x * i % p; y = (LL) y * j % p; } return x * (LL)qmi(y, p - 2, p) % p;
}
int lucas(LL a, LL b, int p) { if (a < p && b < p) return C(a, b, p); return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p; }
分解质因数法求组合数 —— 模板题 AcWing 888. 求组合数 IV
1 2 3 4
当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用: 1. 筛法求出范围内的所有质数 2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ... 3. 用高精度乘法将所有质因子相乘
int primes[N], cnt; // 存储所有质数 int sum[N]; // 存储每个质数的次数 bool st[N]; // 存储每个数是否已被筛掉
void get_primes(int n) // 线性筛法求素数 { for (int i = 2; i <= n; i ++ ) { if (!st[i]) primes[cnt ++ ] = i; for (int j = 0; primes[j] <= n / i; j ++ ) { st[primes[j] * i] = true; if (i % primes[j] == 0) break; } } } int get(int n, int p) // 求n!中的次数 { int res = 0; while (n) { res += n / p; n /= p; } return res; } vector<int> mul(vector<int> a, int b) // 高精度乘低精度模板 { vector<int> c; int t = 0; for (int i = 0; i < a.size(); i ++ ) { t += a[i] * b; c.push_back(t % 10); t /= 10; } while (t) { c.push_back(t % 10); t /= 10; } return c; }
get_primes(a); // 预处理范围内的所有质数
for (int i = 0; i < cnt; i ++ ) // 求每个质因数的次数 { int p = primes[i]; sum[i] = get(a, p) - get(b, p) - get(a - b, p); }
vector<int> res; res.push_back(1);
for (int i = 0; i < cnt; i ++ ) // 用高精度乘法将所有质因子相乘 for (int j = 0; j < sum[i]; j ++ ) res = mul(res, primes[i]);